

Biomarkers in epilepsy and OV329 program updates

June 12, 2025

© Copyright 2025 Ovid Therapeutics

Welcome

Dr. Jeremy Levin Chairman & Chief Executive Officer

Forward-looking statements

This presentation contains "forward-looking statements" within the meaning of the Private Securities Litigation Reform Act of 1995 including, without limitation, the potential therapeutic benefits of Ovid's current or future product candidates and pipeline programs; statements regarding the expected timing of the initiation, completion, and results and data of Ovid's clinical studies; expected timing of IND submission for OV4041 oral; the potential use, development and therapeutic opportunity of OV329, OV350 IV, OV4071 oral and OV4041 oral; expectations regarding the size of the market for OV329; the likelihood that data, including safety and tolerability data, for OV329 will support future development and therapeutic potential; and the suitability of OV329 for a range of indication opportunities. You can identify forward-looking statements because they contain words such as "will," "may," "plan," "believe," "intend," "anticipate," "design," "advance," "target," "seek," "expect," "demonstrate," and "potential," and similar expressions (as well as other words or expressions referencing future events, conditions or circumstances).

Forward-looking statements are based on Ovid's current expectations and assumptions. Because forward-looking statements relate to the future, they are subject to inherent uncertainties, risks and changes in circumstances that may differ materially from those contemplated by the forward-looking statements, which are neither statements of historical fact or guarantees or assurances of future performance. Important risks that could cause actual results to differ materially from those in the forward-looking statements include, without limitation: uncertainties inherent in the preclinical and clinical development and regulatory approval processes; whether interim or preliminary results from a clinical trial will be predictive of the final results of the trial or the results of future trials; the risk that Ovid may be unable to raise additional capital and could be forced to delay, further reduce or to explore other strategic options for certain of its development programs; the risk that Ovid may not be able to realize the intended benefits of its business strategy; Ovid's ability to identify business development transactions; Ovid's or any of its partners' abilities to meet anticipated deadlines and milestones; and/or unanticipated impacts or delays due to macroeconomic and geopolitical conditions. Additional risks that could cause actual results to differ materially from those in the forward-looking statements are set forth under the caption "Risk Factors" in Ovid's quarterly report on Form 10-Q filed with the Securities and Exchange Commission (SEC) on May 13, 2025, and in future filings Ovid makes with the SEC. Any forward-looking statements contained in this presentation speak only as of the date hereof, and Ovid assumes no obligation to update any forward-looking statements contained herein, whether because of any new information, future events, changed circumstances or otherwise, except as otherwise required by law.

Our brain trust

Ovid approach

Opportunity & strategy

Jeremy Levin, DPhil, MB BChir Chairman & Chief Executive Officer Meg Alexander President & Chief Operating Officer

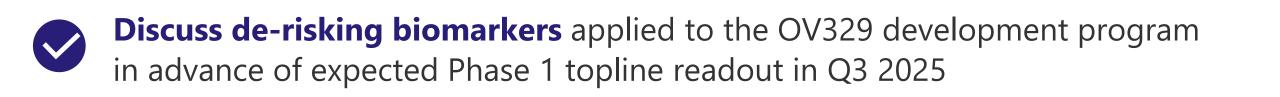
Clinical development

Amanda Banks, MD Chief Development Officer

From biomarkers to bedside

Alex Rotenberg, MD, PhD

Epileptologist Professor of Neurology, Harvard Medical School Director, Neuromodulation Program, Boston Children's Hospital


Our purpose

Review the paradigm shift in antiseizure medication (ASM) development with biomarkers

Share updates on OV329 clinical development and opportunity

Ovid's focus

Foundational biological targets

underlying excess neural excitation with broad potential therapeutic utility

Highly selective small molecule medicines

with the opportunity for multiple clinical-stage programs and commercial medicines

Differentiated mechanisms of action

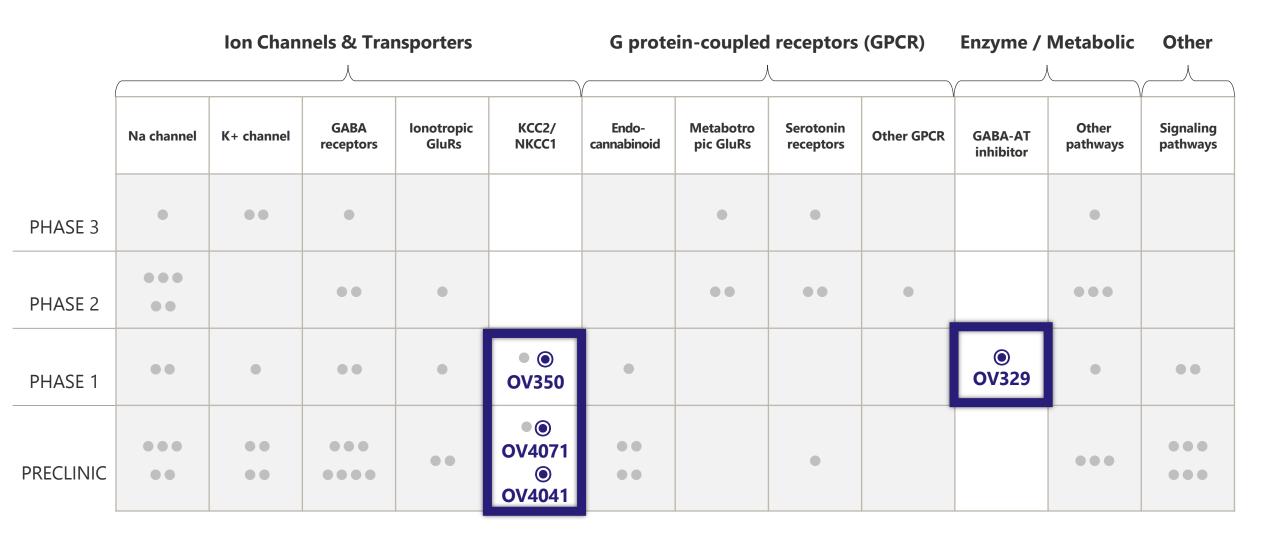
that stand out in a field of me-too medicines

Neuronal hyperexcitability is at the biological root of many brain diseases that have no effective treatment today

The unmet need: Quelling excess neural excitation

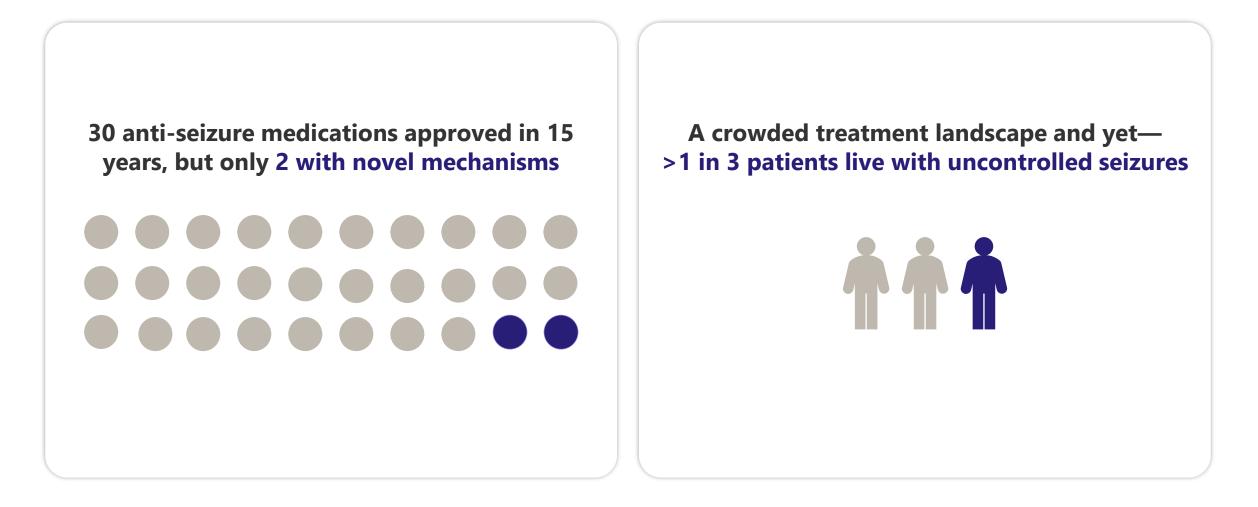
Meg Alexander President & Chief Operating Officer

Differentiated pipeline, with multiple near-term milestones


Programs	Indication opportunities	Preclinical	Phase 1	Phase 2	Anticipated milestones*
OV329					
GABA-aminotransferase inhibitor	Drug resistant adult epilepsies (DREs) & developmental epileptic encephalopathies (DEEs)				Phase 1 topline Q3 2025 (includes biomarkers of target engagement and potential clinical effect) Phase 2a initiation Q1 2026; topline Q1 2027
KCC2 direct activator portfolio					
OV350 IV	First-in-human potential proof of mechanism				Phase 1 initiated Q1 2025 Safety, tolerability and PK Q4 2025
OV4071 oral	Psychosis assoc. with Parkinson's disease and Lewy body dementia				IND-enabling studies in progress Phase 1 initiation expected in Q2 2026 Patient Phase 1b initiation in Q3 2026; topline results in Q1 2027
OV4041 oral	Generalized anxiety disorder or Rett syndrome				Initiating IND-enabling late 2025 IND submission late H2 2026

* Subject to Ovid capital runway or partnerships.

Anti-seizure drug development has **been a sea of sameness**


Ovid pipeline: Differentiated mechanisms fundamental to achieving excitatory:inhibitory balance

Illustrative map of programs in development

11

Drug-resistant epilepsy (DRE): The unmet need hiding in plain sight

OV329

A next-generation, best-in-class GABA-aminotransferase inhibitor for the potential treatment of conditions of neuronal hyperexcitability & seizures

Unmet need in drug-resistant epilepsies & OV329 opportunity

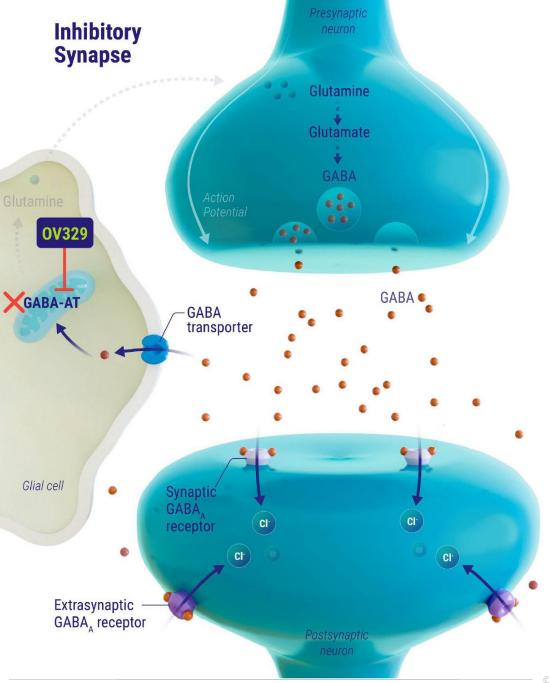
Challenges of existing GABA-enhancing medicines

- Short-acting
 - Inhibition not sustained with many medicines
- Sedating
- Safety challenges of 1st generation
 - Vigabatrin causes irreversible visual toxicity
 - Black Box and REMS
 - Routine ocular monitoring required
- High dose burden of 1st generation medicine
 - Sabril (vigabatrin) starting dose is 3 grams, OV329 is ~1000-fold LESS drug

Intended OV329 target product profile*

Optimally tuned inhibition at low doses

• Durable inhibition and anti-convulsant activity


Sustained seizure reduction

Strong reduction effect across focal & other seizure types

Improved safety profile

- No evidence of ocular changes in humans
- No monitoring expected on label
- No expected titration
- Not sedating in humans
- No anticipated drug-drug interactions

^{*}Intended label reflected; profile will need to be demonstrated through future clinical development and patient studies

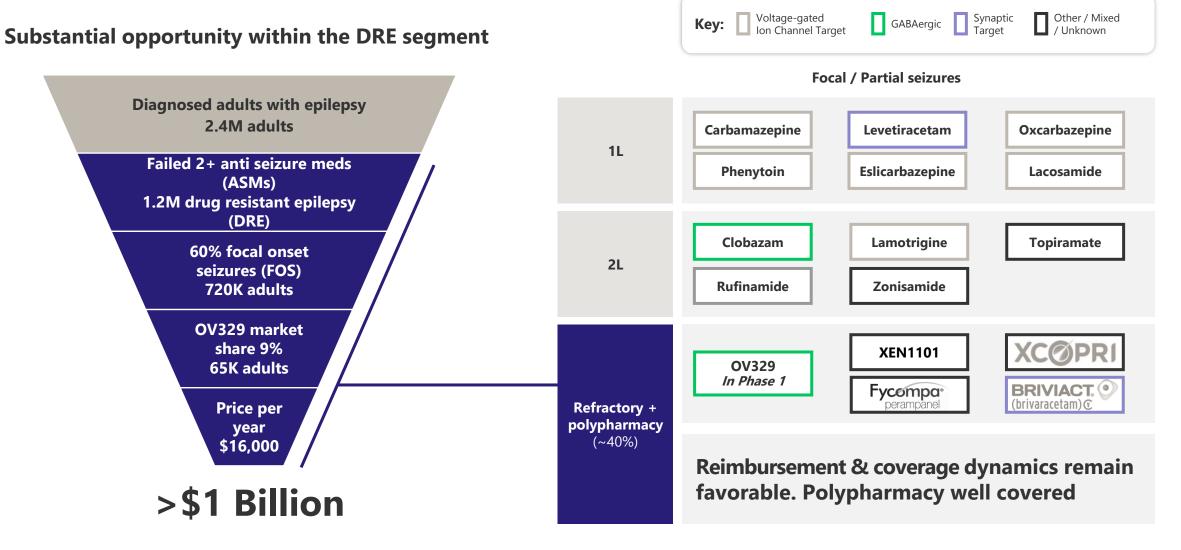
Mechanism of action

- Validated mechanism of action
- Inhibits GABA-AT, the enzyme that catabolizes the inhibitory neurotransmitter, GABA
- Increases GABA in the synapse & extrasynaptic regions
- Believed to optimally tune GABA to create an inhibitory neural milieu

1. Silverman RB. Chem Rev. 2018 Apr 11;118(7):4037-4070. doi: 10.1021/acs.chemrev.8b00009. Epub 2018 Mar 23. PMID: 29569907; PMCID: PMC8459698 2. Colmers P et al. eNeuro 27 June 2024, 11 (7) ENEURO.0137-24.2024; https://doi.org/10.1523/ENEURO.0137-24.2024

OV329 rationally designed to deliver potential best-in-class profile

	OV329	Vigabatrin	
Molecule		H ₃ N ⁺ COO ⁻	
Potency (IC ₅₀) ¹	~0.1 - 0.3 mM	~60 – 100 mM	
Exposure	$T_{1/2}$ ~1.0 Hour with prolonged PD duration	T _{1/2} >5.0 Hours	
Mechanism of enzyme inhibition	Electrostatic (irreversible) (more sophisticated chemistry, primarily enamine pathway) ²	Covalent modification of GABA-AT (irreversible)	
Therapeutic index ^{3,4} No ocular changes in humans		Visual toxicity at therapeutic dose	
Inhibition delivered	Phasic & tonic inhibition (synaptic & extrasynaptic)	Toxicity limits ability to achieve phasic & tonic inhibition	


1. J Med Chem. 2012 Jan 26; 55(2): 567–575; 2. J Am Chem Soc. 2018 Feb 14; 140(6): 2151–2164

2. Feja et al. OV329, a novel highly potent γ-aminobutyric acid aminotransferase inactivator, induces pronounced anticonvulsant effects in the pentylenetetrazol seizure threshold test and in amygdala-kindled rats. Epilepsia. 2021 Dec;62(12):3091-3104. doi: 10.1111/epi.17090. Epub 2021 Oct 7.

3. As seen in clinical trials to date.

4. Ovid data on file. Therapeutic index measured in Sprague Dawley rats, a proxy model used to assess ocular safety.

Unique, well-tolerated MoAs are rewarded in epilepsy, even in a competitive DRE market

1. J Med Chem. 2012 Jan 26; 55(2): 567–575; 2. J Am Chem Soc. 2018 Feb 14; 140(6): 2151–2164

Broader life-cycle opportunity for a safe GABA-AT inhibitor is significant

Initial intended indication

Potential follow-on indications

Focal seizures in adults with drug resistant epilepsy

Focal seizures in developmental epileptic encephalopathies

Post-surgical & perioperative pain

Substance abuse and alcohol withdrawal

18

Imaging and electrophysiology improvements are enabling:

use of predictive biomarkers in ASM development

assessment of CNS drug effects prior to lengthy and costly proof-of-concept trials

comparability across ASMs (in some parameters)

Validate MOA

Demonstrate target engagement

Measure pharmacodynamic response

Provide early efficacy signals

Quantify dose-dependent response

Evolving application of imaging & electroencephalogram technologies to measure ASM biomarkers

Compony	Approved/investigational product	Technology applied		
Company		MRS	TMS	EEG
Ovid Therapeutics	OV329	\checkmark		
Lundbeck	Sabril			
SK Life Science	XCØPRI			
Lundbeck	BRIVIACT. O (brivaracetam) ©			
Xenon	XEN-1101			
Biohaven	BHV-7000			
Praxis	PRAX-628			
Longboard	LB-352			
Bright Minds Bio	BMB-101			

Pierantozzi et al. Effect of vigabatrin on TMS motor responses shows utility in probing in vivo GABAergic inhibition. *Brain Res.* 2004;1028(1):1–8 Selatu et al. Vigabatrin increases beta activity in human EEG. *Electroencephalogr Clin Neurophysiol.* 1986;63(2):152–155.

Biomarker strategy applied in OV329 Phase 1

Healthy volunteers measured pre- and post-treatment with OV329, includes placebo comparators

Multiple parameters being assessed via:

- Magnetic resonance spectroscopy
- Transcranial magnetic stimulation
- Electroencephalogram

Leverage biomarker parameters that have measured vigabatrin & other GABAergic ASMs

Assess drug effect after 7 days of treatment, relative to participant baselines and placebo

Designed to detect directional signal

Good safety and tolerability profile with no drug-related ocular changes

Comprehensive biomarker strategy evaluating OV329

ΤοοΙ	Magnetic resonance spectroscopy (MRS)	Transcranial magnetic stimulation (TMS)	Electroencephalogram (EEG)
Measures	Neurotransmitter concentrations	Cortical excitability and brain circuit function	Brain waves linked to inhibitory (GABAergic) activity
Metrics* (positive & negative controls)	GABA concentrations in the medial parietal lobe	 Cortical silent period (CSP) Paired-pulse long-interval intracortical inhibition (LICI) Paired-pulse short-interval intracortical inhibition (SICI) Resting motor threshold (rMT) Intracortical facilitation (ICF) 	High and low frequencies
What it suggests	Target engagement as measured by increased in GABA concentrations using modern MRI "fitting" technology	 Pharmacodynamic activity on GABA_A, GABA_B receptors and overall enhancing brain inhibition No excitatory 	GABAergic pharmacodynamic effect as shown by changes in high frequency brain activity
		(glutamatergic) activity	

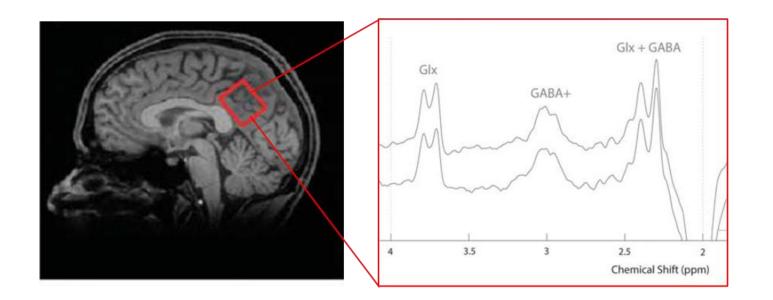
* All metrics compare post-OV329 values with baseline

From biomarkers to bedside Dr. Alex Rotenberg

Comprehensive biomarker strategy evaluating OV329

ΤοοΙ	Magnetic resonance spectroscopy (MRS)	Transcranial magnetic stimulation (TMS)	Electroencephalogram (EEG)
Measures	Neurotransmitter concentrations	Cortical excitability and brain circuit function	Brain waves linked to inhibitory (GABAergic) activity
Metrics* (positive & negative controls)	GABA concentrations in the medial parietal lobe	 Cortical silent period (CSP) Paired-pulse long-interval intracortical inhibition (LICI) Paired-pulse short-interval intracortical inhibition (SICI) Resting motor threshold (rMT) Intracortical facilitation (ICF) 	High and low frequencies
What it suggests	Target engagement as measured by increased in GABA concentrations using modern MRI "fitting" technology	 Pharmacodynamic activity on GABA_A, GABA_B receptors and overall enhancing brain inhibition No excitatory (glutamatergic) activity 	GABAergic pharmacodynamic effect as shown by changes in high frequency brain activity

* All metrics compare post-OV329 values with baseline

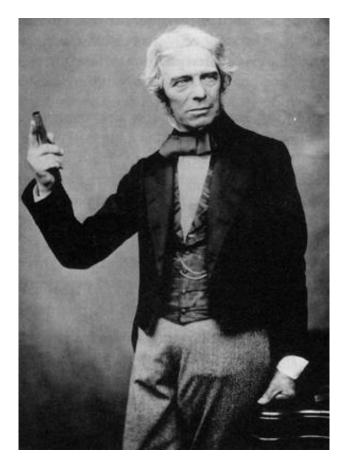

Comprehensive biomarker strategy evaluating OV329

ΤοοΙ	Magnetic resonance spectroscopy (MRS)	Transcranial magnetic stimulation (TMS)	Electroencephalogram (EEG)
Measures	Neurotransmitter concentrations	Cortical excitability and brain circuit function	Brain waves linked to inhibitory (GABAergic) activity
Metrics* (positive & negative controls)	GABA concentrations in the medial parietal lobe	 Cortical silent period (CSP) Paired-pulse long-interval intracortical inhibition (LICI) Paired-pulse short-interval intracortical inhibition (SICI) Resting motor threshold (rMT) Intracortical facilitation (ICF) 	High and low frequencies
What it suggests	Target engagement as measured by increased in GABA concentrations using modern MRI "fitting" technology	Pharmacodynamic activity on GABA _A , GABA _B receptors and overall enhancing brain inhibition	GABAergic pharmacodynamic effect as shown by changes in high frequency brain activity
		No excitatory (glutamatergic) activity	

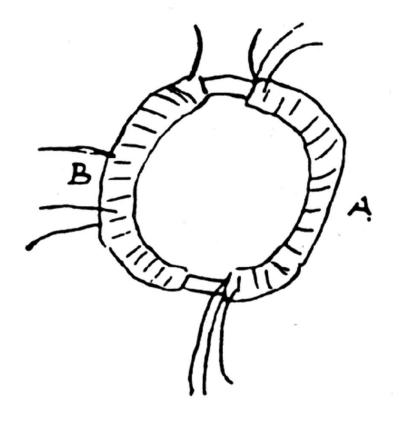
* All metrics compare post-OV329 values with baseline

MRS may validate the OV329 approach

- Specialized MRI scan that provides a noninvasive way to measure chemicals in the brain
- Evaluates changing GABA concentrations in response to antiseizure medications



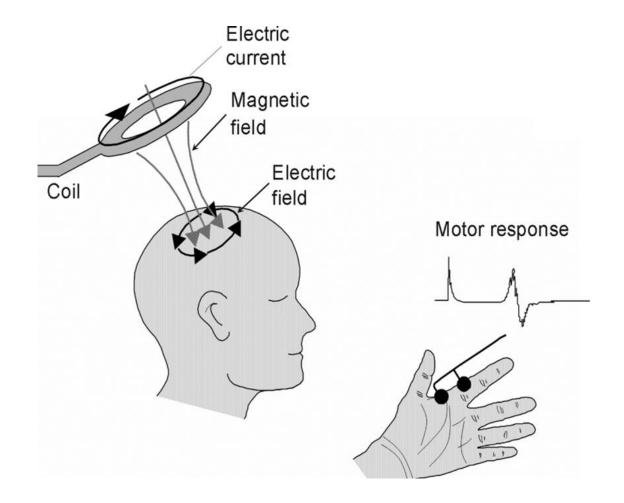
Comprehensive biomarker strategy evaluating OV329

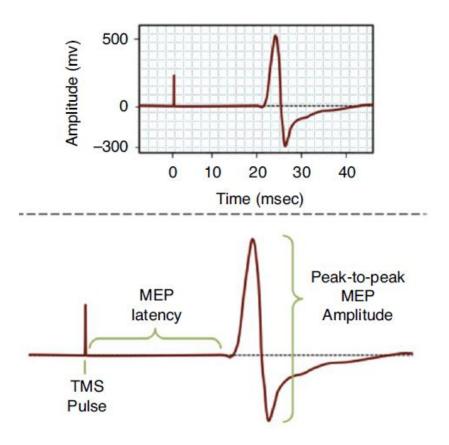

ΤοοΙ	Magnetic resonance spectroscopy (MRS)	Transcranial magnetic stimulation (TMS)	Electroencephalogram (EEG)
Measures	Neurotransmitter concentrations	Cortical excitability and brain circuit function	Brain waves linked to inhibitory (GABAergic) activity
Metrics* (positive & negative controls)	GABA concentrations in the medial parietal lobe	 Cortical silent period (CSP) Paired-pulse long-interval intracortical inhibition (LICI) Paired-pulse short-interval intracortical inhibition (SICI) Resting motor threshold (rMT) Intracortical facilitation (ICF) 	High and low frequencies
What it suggests	Target engagement as measured by increased in GABA concentrations using modern MRI "fitting" technology	Pharmacodynamic activity on GABA _A , GABA _B receptors and overall enhancing brain inhibition	GABAergic pharmacodynamic effect as shown by changes in high frequency brain activity
		No excitatory (glutamatergic) activity	

* All metrics compare post-OV329 values with baseline

TMS is based on Faraday's Principle

Michael Faraday (1791 - 1867)

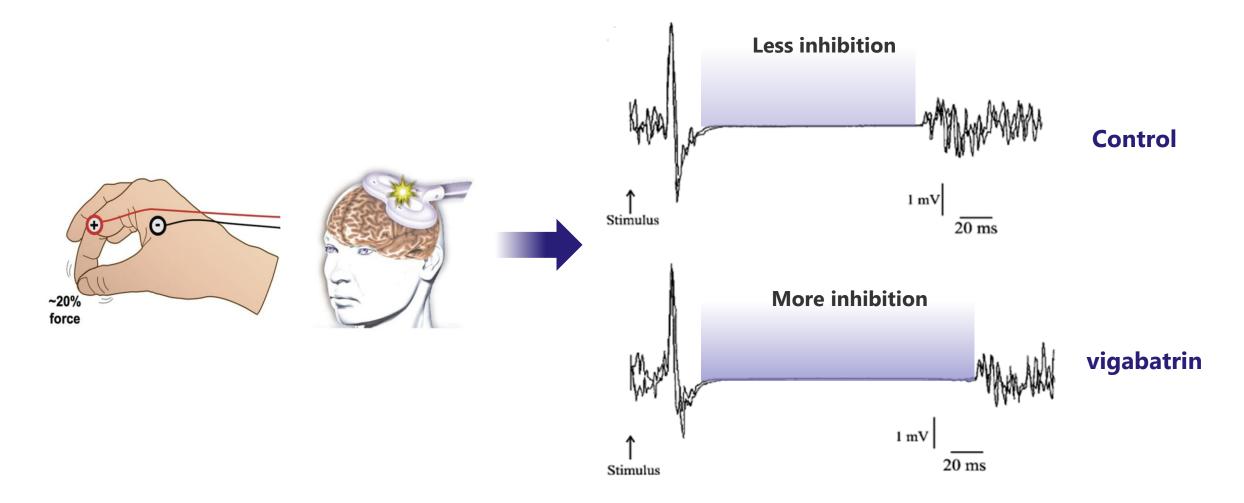




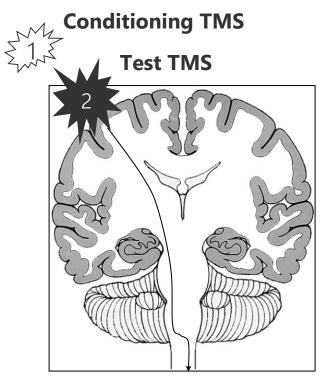
Electromagnetic induction: 1831

Induction stove

TMS: a method for focal noninvasive electrical brain stimulation



TMS is feasible across ages

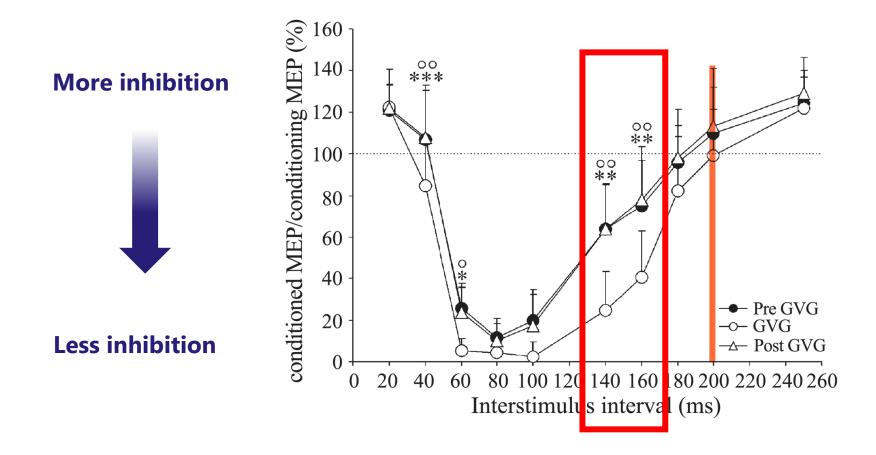


Why measure CSP? It increases with enhanced cortical inhibition

Edwards D, Davila Perez P, Horvath J, Rotenberg A, Pascual-Leone A. *A Practical Manual for Transcranial Magnetic Stimulation*. Springer; 2024. doi:10.1007/978-3-031-62304-2. Pierantozzi et al. (2004), Brain Res; 1028(1):1–8.

GABAergic cortical inhibition measures by paired-pulse TMS (ppTMS) LICI

Rotenberg and Pascual-Leone, 2010


Motor response

Paired-pulse MEP inhibition

50 ms

Why measure LICI? Inhibition increases with vigabatrin

VGB showed greatest impact & statistical significance on the LICI between 140 ms – 160 ms

Pierantozzi M et al. Effect of Vigabatrin on motor responses to transcranial magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans. Brain Research, Nov. 26, 2004.

© Copyright 2025 Ovid Therapeutics

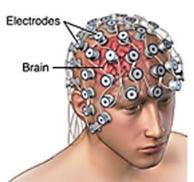
Targeted directional change in TMS biomarkers

Metric	Published with therapeutic vigabatrin	OV329 anticipated change
Cortical silent period (CSP)	Increased 19%	
Paired-pulse long-interval intracortical inhibition (LICI)	Increased 35%	\mathbf{O}
Paired-pulse short-interval intracortical inhibition (SICI)	No change	
Resting motor threshold (rMT)	No change	
Intracortical facilitation (ICF)	No change	

1.. In this study, vigabatrin was dosed at 50 mg/kg. in keeping with the recommended therapeutic dose of 2,500 – 3000 mg in patients daily.

2. Pierantozzi M et al. Effect of Vigabatrin on motor responses to transcranial magnetic stimulation: an effective tool to investigate in vivo GABAergic cortical inhibition in humans. Brain Research, Nov. 26, 2004.

© Copyright 2025 Ovid Therapeutics


Comprehensive biomarker strategy evaluating OV329

ΤοοΙ	Magnetic resonance spectroscopy (MRS)	Transcranial magnetic stimulation (TMS)	Electroencephalogram (EEG)
Measures	Neurotransmitter concentrations	Cortical excitability and brain circuit function	Brain waves linked to inhibitory (GABAergic) activity
Metrics* (positive & negative controls)	GABA concentrations in the medial parietal lobe	 Cortical silent period (CSP) Paired-pulse long-interval intracortical inhibition (LICI) Paired-pulse short-interval intracortical inhibition (SICI) Resting motor threshold (rMT) Intracortical facilitation (ICF) 	High and low frequencies
What it suggests	Target engagement as measured by increased in GABA concentrations using modern MRI "fitting" technology	 Pharmacodynamic activity on GABA_A, GABA_B receptors and overall enhancing brain inhibition No excitatory (glutamatergic) activity 	GABAergic pharmacodynamic effect as shown by changes in high frequency brain activity

* All metrics compare post-OV329 values with baseline

EEG may further demonstrate OV329's ability to modulate inhibition

- Noninvasive tool that uses sensors placed on the scalp to measure brain electrical activity
- Detects abnormal brain activity associated with seizures
- GABAergic drugs can increase faster frequencies
 - Beta and gamma power

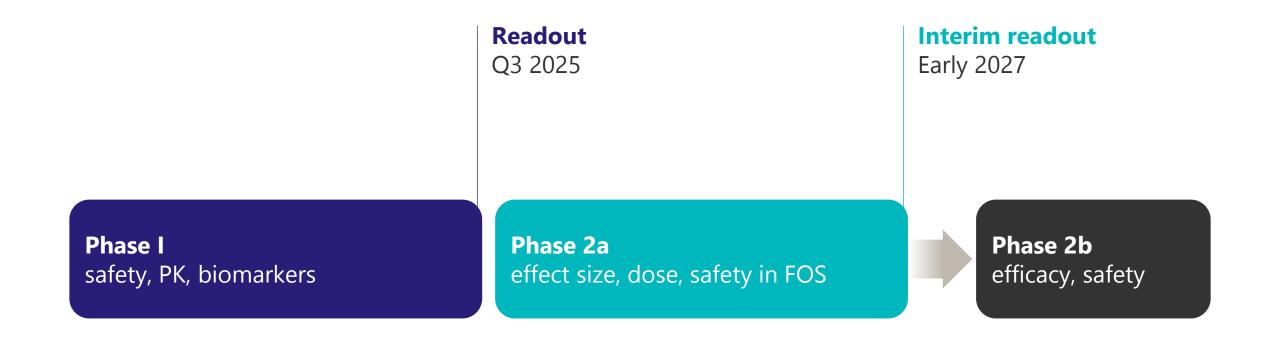
Combination of biomarkers as powerful indicator of target engagement and biological effect

Increase in GABA by MRS

Increase in EEG beta

Increase in key TMS measures (e.g., LICI 150 ms and CSP)

There is significant unmet need for a safe and well-tolerated GABA-AT inhibitor

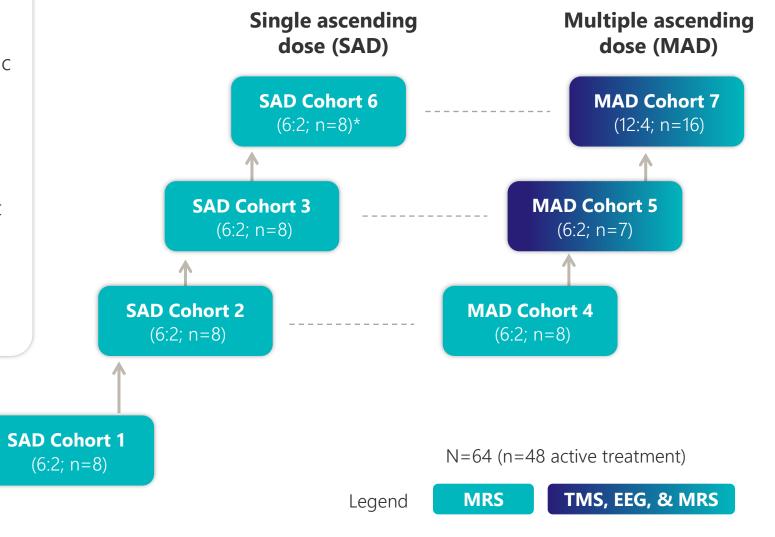


Clinical development

Dr. Amanda Banks

Chief Development Officer

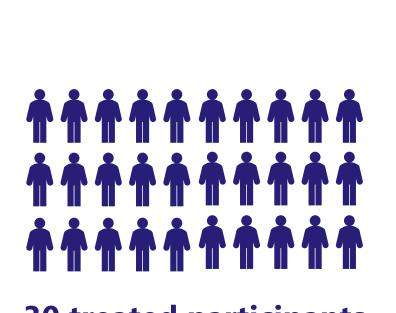
Status and key anticipated upcoming readouts for OV329 next 24 months


OV329 Phase 1 trial design

- Ph 1 SAD/MAD in healthy volunteers
- Safety/tolerability including ophthalmic safety & metrics
- Pharmacokinetics
- Exploratory biomarker assessments of biological effect & target engagement

• TMS

• EEG



*no imaging

Targeted outcomes of biomarker metrics

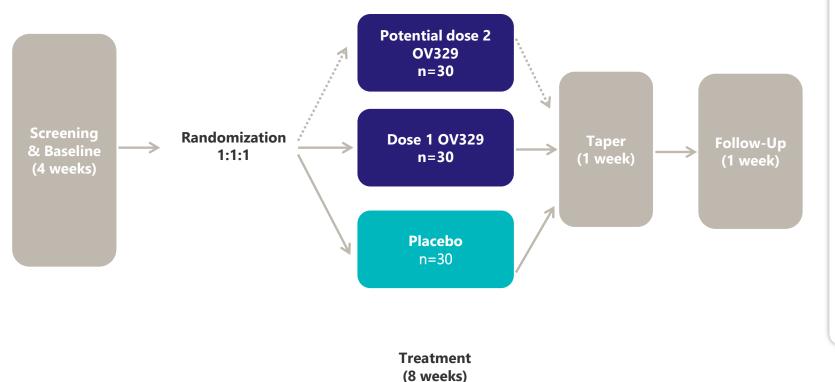
Measurement/Endpoint	Precedent	What we expect	Why it matters		
MRS GABA concentration	VGB showed increase	Increase	Direct measure of GABA increase validates target engagement		
TMS Long-interval intracortical inhibition (LICI 150)	VGB showed 35% increase	Increase	Pharmacodynamic response consistent with increase in GABA		
TMS CSP Duration	VGB 25 – 30 millisecond prolongation	Increase	Pharmacodynamic response consistent with increase in GABA		
EEG Brain wave frequency	GABAergic ASMs increase beta & gamma power	Increase	Pharmacodynamic response consistent with increase in GABA		

A differentiated safety profile

30 treated participants

No treatment-related AEs or SAEs

• Most common AE was headache


No vision or ocular findings associated with treatment

Comprehensive ocular safety metrics

- Best corrected visual acuity
- Indirect dilated ophthalmoscopy
- Automated threshold visual field perimetry
- Fundus photography
- Optical coherence tomography (OCT)

43

A fast path to patients: Phase 2a trial design in patients with focal-onset seizures

Evaluating the safety, tolerability, and antiseizure effect of OV329

- Seizure reduction effect size
- Building comprehensive safety package
- Phase 2b dose & design guidance
- Preliminary readout in early 2027

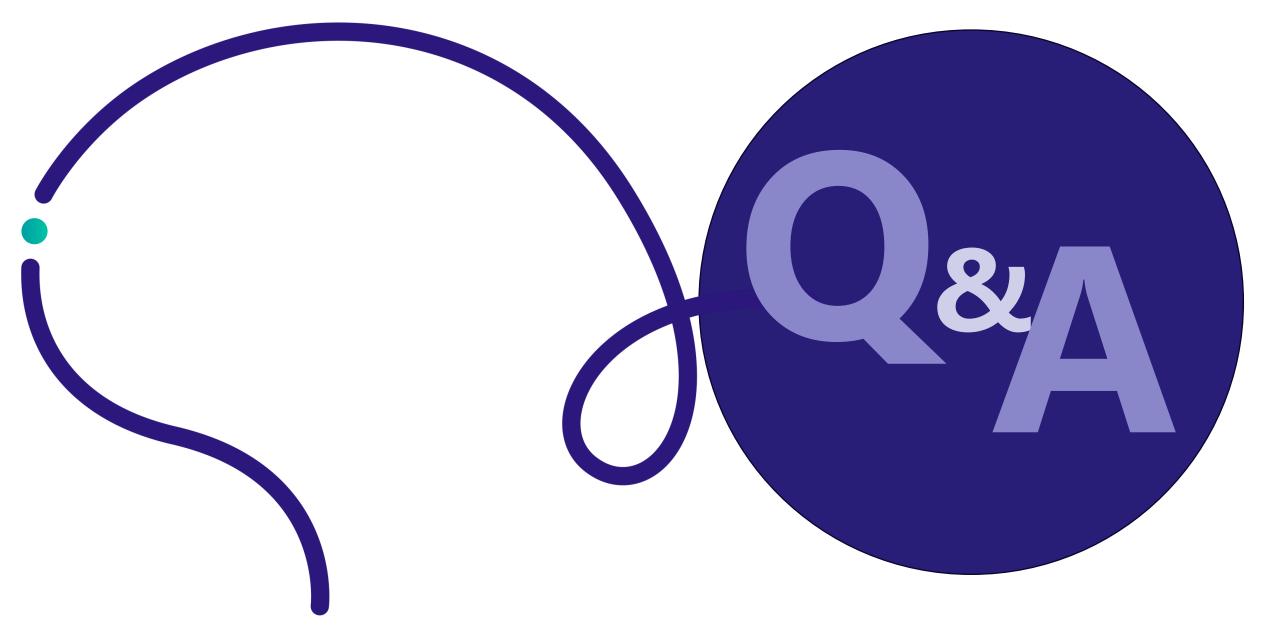
IN MEMORIAM

Savannah Salazar 1993-2025

What comes next?

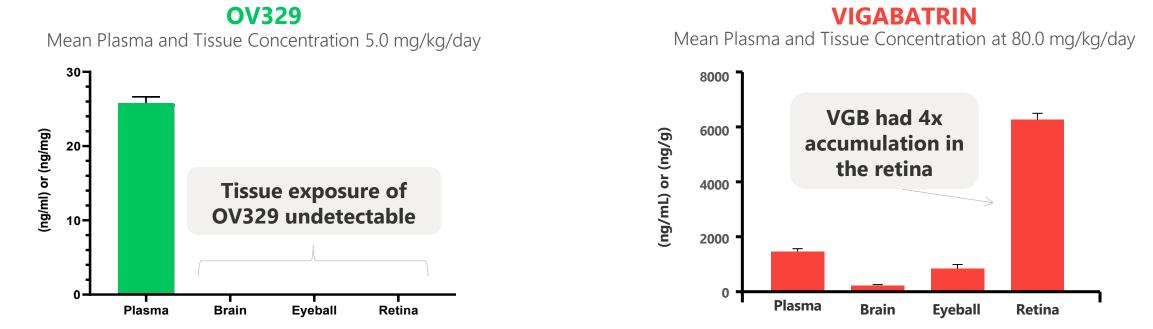
Topline OV329 readout expected Q3 2025. Designed to demonstrate potential:

- Proof of target engagement
- Delivering GABAergic (inhibitory) activity
- Comparable results relative to first-generation GABA-AT
- Good tolerability and safety


Results should deliver insights, further conviction and de-risk Phase 2

Patient trials in drug-resistant epilepsies (DRE) to begin in Q1 2026

On track to bring an effective differentiated mechanism of action with preferred safety and tolerability



Ovidrx.com

Head-to-head ocular accumulation study of OV329 versus vigabatrin

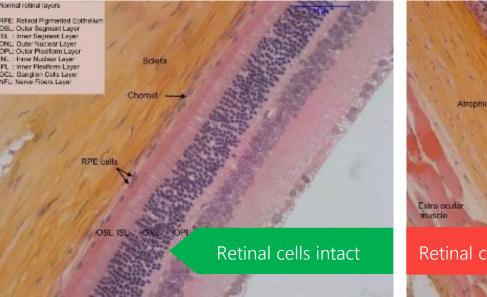
Lack of retinal accumulation of OV329 supports differentiated profile vs. vigabatrin¹

OV329 penetrated the brain, was present in the plasma and then cleared the tissue

- No accumulation detected of OV329 in the eye or retina
- 4-fold greater exposure of vigabatrin in retina as compared to plasma
- Suggests vigabatrin, but not OV329, preferentially partitions into the retina when plasma exposure is kept at a relatively constant level

^{1.} Tsai, J., et al. (2024). Evaluation of the Potential Accumulation of OV329 in the Brain, Retina, and Eye Following Continuous Infusion. Poster presented at the 2024 Epilepsy Pipeline Conference.

Differentiated safety in retinal model required by regulators


Anti-convulsant activity in 9 animal seizure models

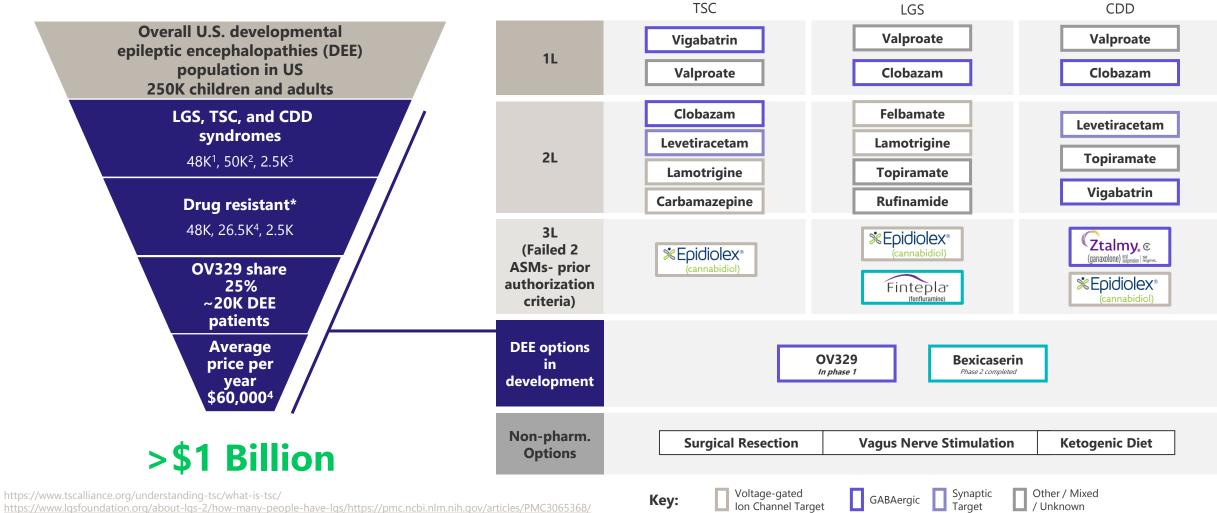
- Represent a wide range of seizures
- Clinically active at low doses

Ocular safety profile differentiation

- Demonstrated in 2 models & toxicology
- Unique potency, binding & clearance profile likely related to lack of accumulation in eye

OV329 3.0 mg/kg (Therapeutic dose)

vigabatrin 300 mg/kg (Therapeutic dose)



No ocular effects seen in 3 mg/kg q.d. in rats Ocular changes in more than half of rats treated (300 mg/kg)

45-day study

Continued unmet need across a range of rare epilepsies; limited treatment options indicated for LGS, TSC, CDD with drug resistant seizures

Substantial opportunity within the DEE segment

3. https://www.epilepsy.com/causes/genetic/cdkl5-disorder

4. Assuming weight based dosing 50% 25kg and 50% 55kg. Analgoue pricing Fintepla ranges from 60-130K and epidiolex 35k-70K

* assuming all patients will become resistant at some point during treatment; TSC 80% with seizure and 65% resistant

Effects of GABAergic drugs on GABA concentrations based on MRS studies

No.	Drugs	Dose (mg)	Study Population	Single voxel placement	Magnet strength (Tesla)	Magnitude of change	Year
1 Gabapentin		900	11/Healthy	Visual cortex	7	>50% compared to baseline	2012
	1200-3600 mg/day	14/Complex partial seizures	Occipital cortex	2.1	~28-50% increase treated vs. untreated	1996	
		100	15/Complex partial seizures	Occipital cortex	2.1	Increase 0.8 mM by 4h vs. baseline	2001
2	2 Topiramate	2.8 mg/kg	17/Healthy	Occipital lobe	4.1	~70% increase over 3 hrs; stable at 6 hrs	2002
2		75-500 mg/day	9/Healthy + 12/Complex partial	Occipital cortex	2.1	~80% compared to baseline	1999
		3 mg/kg	6/Healthy	Occipital lobe	4.1	72% over 3 hrs; 64% at 6 hrs	1998
3	Lamotrigine	3.5 mg/kg	6/Healthy	Occipital lobe	4.1	25% after 4 weeks	2002
4	Levetiracetam	1000-2000 (avg. 1322)	16/Focal epilepsy	Occipital lobe	3	~20%	2010
5	Valproate	1250-3000 mg/day	10/Healthy + 14 complex partial	Occipital cortex	2.1	No sig difference	1999
6	CPP-115	80	6/Healthy	Parietal-Occipital cortex + motor area	2.89	52-141%	2018
7	Vigabatrin	3000 mg	6/Partial seizures	Occipital cortex	2.1	Near 3-fold increase	1999
		1000-3000 mg/day	17/Partial complex	Occipital cortex	2.1	2 to 5-fold increase	2001

52

OV329 Phase 1 trial design

Establish safety & tolerability of GABA-AT inhibitor OV329

 Exploratory biomarkers measuring biological effect and target engagement Magnetic resonance spectroscopy (MRS) Transcranial magnetic stimulation (TMS) Electroencephalography (EEG) 	 Endpoints Pharmacokinetics Safety and tolerability Ophthalmic safety metrics & monitoring Best corrected visual acuity Fundus photography Indirect dilated ophthalmoscopy Optical coherence tomography (OCT) 			
Excellent safety observed to date	Current cohort			
 No serious adverse events Adverse events mild and transient (e.g., headache) 	 Higher dose cohort added to optimize Phase 2 dosing opportunities Larger patient enrollment to support ability to show biomarker signal 			