Rapid Functionalization of Treg
Exosomes for Targeted
Immunotherapeutics

Phil Campbell, PhD
Carnegie Mellon University
on behalf of
Coya Therapeutics, Inc.

51" Exosome Based Therapeutics Summit
Boston, MA

[/ September 2023




Therapeutic Potential of Exosomes
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The potential innate therapeutic properties of MSC, Treg and Platelet exosomes mirror those of
source cells themselves.

Thus, these exosomes have the potential to simplify therapy logistics while providing source cell
therapeutic effects in an alternative, cell-free manner.



Just Like the Mythological Janus, MSC-Exosomes and
Treg Exosomes have Two Sides-

- They can be Drivers of immunoregulation
= g “ promoting tissue regeneration and
= - transplant immunotolerance.
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- They can be Drivers for the promotion of
cancer development.
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Tregs are Important Immunomodulatory Cells and are Drivers
Controlling Inflammation, Enabling Tolerance, Promoting Healing

and Regenerative Processes, but......
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Autoimmunity

Reduction and loss of Treg population

- Loss of homeostasis and peripheral
tolerance

- Loss of adequate immune response
and regulation to prevent
non-specific symptoms

- Promotes abnormal autoimmunity
and autoimmune diseases

Healthy

Balanced Treg and inflammatory
immune cell populations

- Promotes homeostasis and
peripheral tolerance

- Regulates immune response to
prevent non-specific symptoms

- Permits cancer immuno-surveillance

Cancer

Abnormal increase of Treg population

- Loss of cancer immuno-surveillance

- Promotes suppression of anti-tumor
response

- Promotes cancer progression

And, exosomes, as part of the Treg secretome, include many of the cell signaling aspects of their
parent cells thus mediate Treg physiological and pathophysiological conditions.



Treg Exosomes Suppress Pro-Inflammatory Myeloid Cells and T Cell
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Treg Exosomes Can Have "Better’ Immunomodulation to MSC

Exosomes
S MSC vs Treg EV MSC vs Treg EV
M1 IL-6 protein Tresp proliferation
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However, the primary cavate is that these cells are primary so
CYA hugely heterologous both within and across isolates.
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Precision Cut Tissue Slices as a Model to Study Treg Exosome

EV Against Ischemic Injury EV Against Inflammation
6hr Incubation Overnight Incubation 6hr Incubation 12hr Incubation
With or Without EV Without EV With or Without EV Without EV
Incubated in 37C Various Temperature 37C Incubated in 37C Various Temperature

Hypoxic Control Control Inflammation
Media Media Media Media
v v v v
18hr ELISA for TNF-a
Ohr éhr Final
Viability Viability Viability
Assay Assay Assay
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Examples of Treg EV Protection of PCTS From Either Hypoxia or
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Beyond the Inherent Cargo Properties,

Primary : :
MSCs : Exosomes are Nature’s Nanoparticle
7 . .
2.5 Drug Delivery Vehicle
S 8
Inherent Cargo ) . .
Properties - Designed for receiver cell uptake.
- Crosses physiological barriers that
- Immunoregulatory o % the “typical” man-made nanoparticle
- Angiogenic % (o] cannot (Ie BBB)

- Anti-fibrotic - Exosomes offer low toxicity, high
- Anti-apoptotic biocompatibility and low

- Regenerative and/or Immunogenicity.
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- Mitochondrial transfer 23 - Inherent targeting capacity.
(7))
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Beyond their innate cargo,
there are opportunities to
provide additional cargo using
engineering strategies
iIncluding genetic, physical or
chemical approaches.

.......

Engineering Exosome Cargo Presents
Opportunities to Improve Their
therapeutic Potential

Improving stability

Increasing plasma retention during
systemic delivery

Altering biodistribution

Increasing residence time during local
delivery

Enhancing cell targeting with systemic
delivery

Enhancing cell targeting and uptake
with local delivery

Enhancing targeted therapeutic effects



We at CMU are Developing Non-Genetic Engineering and Direct
Approaches to Load Both Luminal and Surface Exosome Cargo

Engineering Exosome Luminal Cargo Engineering the Exosome Surface
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Generalized and Direct Exosome Surface Functionalization Using DNA Tethers
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Dose Dependency of ssDNA Tethers Stability of ssDNA Tethers on Exosomes
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- Inhibitors

+ Inhibitors
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Cell Uptake of DNA-Tethered Exosomes
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Exosomes Functionalized With FasL (Exo-FasL) are Bioactive In Vitro

FasL induces apoptosis in Fas receptor-bearing cells
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Exosomes Functionalized with FasL-Strep to EVs via DNA Sai vereni
Tethers Alters the Immune Microenvironment of the Spleen Haval Shirwan

Esma Yolcu
d nd Lyl N ph N Od e P Pradeep Shrestha
/ \\ PBS M Exo-ssDNA-SA-FasL B Exo-ssDNA-biotin B Soluble SA-FasL
/ \
': ‘I; 80- kkEk KKk kkk
1' -, kekk  kkk kR
T (5 S~ 3 60 L
i a0 Mﬁ": s
o Vortex, RT, 5 min 30 b T
- .'k " 2. . ’. ‘l.." .'
| %/ 37 °C, 30 mii %y} 5 40-
Exosome ' % '|'
8 + * Exo-FasL \o 20-
o
Biotin Streptavidin FasL
Jurkat Cells
. — %CD3 %CD3 %CD4 %CD8
‘ \\\ 2 Hours 24 Hours 72 Hours o { \ % Total % Proliferation
\% e \
A pan— =X > | |
il . (/ y
# KN ' — 4 PBS MM Exo-ssDNA-SA-FasL mm Exo-ssDNA-biotin B Solube SA-FasL
’ N A L==gn = “(v,/ -
/4 t) \i [ T W X N 3
l’ I Ner”” NG AL Spleen and lymph node
\ (o) / F1(C57BLE- /s':‘\ harvest 8 & T
N ,  DTRXBALBIC,,*% [ St o7 S 1 )
S bxd " i, (N s ) o \l T) T
H-2 ) Y4 ) g \' 4 %o n b o
| B4y "‘v.\’ y s, ) ' ] -"“’,,“",c‘/“".. ‘ =
1 @G ‘ 1 ,\...’.'-\;}'.,:\‘ -1 o 401 . o
L.V. injection PR Oh o, £
\ .t r‘ 5 e ‘\ .'\_ J: ,‘\,,‘). J >
CFSE labeled \f&" '\i:’ \~: :/ Analyze by flow cytometry —o' 20 T
Spleenocytes | == il | (panels 5b,c) s
C57BL/6 (H-2b) I.P. injection -
Exo-ssDNA-SA-FasL %CD3 %CD3 %CD4 %CD8

% Total % Proliferation

Carnegie
Mellon
S. S. Yerneni*, S. Lathwal* et. al., ACS Nano (2019) University




We asked the question, could we engineer the surface
of the Treg exosome to improve their delivery to
iImmune cells?

We considered increasing the EV surface of CTLA4 using
our DNA-cholesterol tethering approach.

We created tethers with terminal aptamers to either His or
Fc tagged recombinant proteins, ie. His-CTLA4 or Fc-CTLA4
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CitAdprotein — (CT] 4 |s contained infon Treg Exosomes
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Aptamer Sequences with chol-DNA
Tethers for Direct Engineering of

(RRRRRERRRRRRERRERYE CTLA4 Onto Treg EXOSOmeS

—>-o e DNA-3T-ApFc
& ST AGCTATEEEATCOAACTGEAGT TTTGCCACATTAGTCTCACCACTACCTGCGTACCTACCGCCGEC
Chol-DNA-aptamer

DNA'-3T-ApHis
AGCTATGGGATCCAACTGCAGTTTTGTTTGCCGGTGGGCAGGTTTAGGGTCTGCTCGGGATTGCGGAGGAACA
TGCGTCGCAAAC

DNA'-3T-ApNCirl
AGCTATGGGATCCAACTGCAGTTTTGCCATACACAGACTCTCCTCTCTCCCCAACTTCCCACTTT

Chol-DNA-aptamer [Tag]-CTLA4

>

Exosome

Exosome-DNA-aptamer

C Y A Exosome-DNA-CTLA4

THERAPEUTICS (via aptamer-Tag binding)




Chol-DNA Tethers can be Loaded onto Treg EVs
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CTLA4 can be Tethered to Treg Exosomes Using
Aptamers Sequences on the chol-ssDNA Tethers
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CTLA4 Increases Uptake of Treg Exosomes into Macrophages
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CTLA4 Increases Uptake of Treg Exosomes into T Cells.
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Rationale for Engineering CTLA4 onto Treg Exosomes
to Increase Targeting to Immune Cells.
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Summary

- Engineering exogenous CTLA4 onto Treg exosomes results in their increased
binding and internalization into immune cells.

- Therefore, the delivery of the Treg exosome cargo (both surface and luminal) to
modify both innate and adaptive immune cells is expected to be enhanced. We

will be determining this in upcoming experiments.

- We will also be delivering CTLA4-Treg exosomes in future experiments in vivo
with the intent to alter immmune environment to inhibit/reverse chronic

inflammatory conditions, and to promote transplantation.
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